The Clark Wilson Security Model

George W. Dinolt CS4605

Background

- Based on Commercial Policies
- Importance is more on Integrity of computations
- Support prevention of and disclosure of fraud
- Support prevention of errors in calculations/data entry/data reporting.
- Claim: Need additional mechanisms to support Integrity Policies

Commercial Policies Concepts

- Fundamental idea is the Well Formed Transaction
- Users/Programs only manipulate date on specified ways that preserve integrity of the data
- Separation of Duties, people creating procedures are not allowed to execute them on live data

Differences with DoD Model

- Data is associated with the set of programs that can be used to manipulate it (not a security level)
- Access decisions are based on the fact that Users are given access to particular programs that manipulate particular data items
- Users are grouped by the duties (programs) they are to perform

Mandatory Commercial Policy

- Users Cannot change the programs that they can execute
- Users Cannot change the data associated with particular programs
- System/Application administrators responsible for assigning

Commercial Policy Properties

- Identify and Authenticate Users
- Ensure that specific data items can only be manipulated by a specific set of programs
- The programs meet the "well formed transaction" rules
- Maintain a log that contains program, user name, data files accessed
- Integrity properties are always enforced or subverted
- Protection Mechanisms cannot be changed

Integrity Model Terms

 \mathcal{CDI} : Set of Constrained Data Items, the elements that are to be protected

UDI: The set of Unconstrained Data Items.

 \mathcal{IVP} : Set of Integrity Verification Procedures, functions that determine whether a particular data collection of \mathcal{CDI} 's satisfy a particular integrity constraint

Terms Continued

 $T\mathcal{P}$: Set of Transform Procedures, each transform procedure is a function from a set of \mathcal{CDI} 's to a set of \mathcal{CDI} 's. The goal is that if the original set of \mathcal{CDI} 's satisfy the appropriate \mathcal{IVP} then the transformed \mathcal{CDI} 's will also. $T\mathcal{P}$ s must be treated as atomic transactions.

UserID: The names of the set of users that can use the system

Certification Properties

C1: All \mathcal{IVP} s must properly ensure that all \mathcal{CDI} s are in a valid state at the time the \mathcal{IVP} is run.

C2: All \mathcal{TP} s must be certified to be valid. That is they must take a \mathcal{CDI} to a valid final state, provided the initial state was valid. For each \mathcal{TP} and each set of \mathcal{CDI} s that it may manipulate, the security officer must specify a "relation", which defines that execution. A relations is thus of the form:

$$(\mathcal{TP}_i, (\mathcal{CDI}_a, \mathcal{CDI}_b, \mathcal{CDI}_c, \ldots))$$

where the list of \mathcal{CDI} s defines a particular set of arguments for which the \mathcal{TP} has been certified

Enforcement Properties

E1: The system must maintain the list of relations specified in rule C2, and must ensure that the only manipulation of any \mathcal{CDI} is by a \mathcal{TP} , where the \mathcal{TP} is operating on the \mathcal{CDI} as specified in some relation.

E2: The system must maintain a list of relations of the form

$$(UserID, \mathcal{TP}_i, (\mathcal{CDI}_a, \mathcal{CDI}_b, \mathcal{CDI}_c, \ldots))$$

which list the data objects that \mathcal{TP} may reference on behalf of that user. It must ensure that only executions described in one of the relations are performed.

E3: The system must authenticate the identity of each user attempting to execute a \mathcal{TP}

Cert Props - Continued

C3: The list of relations in **E2** must be certified to meet the separation of duty requirements

C4: All \mathcal{TP} s must be certified to write to an append-only \mathcal{CDI} (the log) all information necessary to permit the nature of the operation to be reconstructed

C5: Any \mathcal{TP} that takes a \mathcal{UDI} as an input value must be certified to perform only valid transformations or else no transformations, for any possible value of the \mathcal{UDI} . The transformation should take the input from the \mathcal{UDI} to a \mathcal{CDI} or the \mathcal{UDI} is rejected. Typically this is an edit program.

Mandatory Policy

E4: Only the agent permitted to certify entities may change the list of such entities associated with other entities: specifically, those associated with a \mathcal{TP} . An agent that can certify an entity may not have any execute rights with respect to that entity.

RBAC

There are sets role, subject and tran and functions:

 $AR: subject \rightarrow role$ {the active role of subjects}

 $RA: subject \rightarrow 2^{role}$ {the authorized roles of subjects}

 $TA: role \rightarrow 2^{tran}$ {transactions authorized for a role}

 $exec: subject \times tran \rightarrow bool \{ true \ if \ subject \ can \ execute \ transaction \}$

RBAC Rules

Role Assignment:

$$\forall s : subject, t : tran : (exec(s, t) \Rightarrow RA(s) \neq \phi)$$

Role Authorization:

$$\forall s : subject : AR(s) \in RA(s)$$

• Transaction authorization:

$$\forall s : subject, t : tran : (exec(s, t) \Rightarrow t \in TA(RA(s)))$$

ullet Object access: there are additional sets object, and modes

$$access: role \times tran \times object \times mode \rightarrow bool$$

$$\forall s : subject, t : tran : o : object : (exec(s, t) \Rightarrow access(AR(s), t, o, x))$$

RBAC / CW Comparison

- RBAC has *subject*, CW has *UserID*
- ullet RBAC has tran, CW has \mathcal{TP}
- \bullet RBAC has transaction authorization, CW assigns users to \mathcal{TP}
- RBAC has transaction autorization and Object access, CW has \mathcal{TP} bound to \mathcal{CDI} .